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SECTION 1
INTRODUCTION

Calculations of the source region EMP response of very long

buried and elevated cables have generally been performed by the use of the

transmission-line approximation to the full electromagnetic scattering

problem. (For examples, see References 1-2.) That approximation is

useful when the response is dominated by an approximately transverse

magnetic and transverse electric wave that is guided along the cable (a

TEM mode). Usually, if a guiding structure supports a TEM mode, that mode

dominates the response of the structure and the transmission-line theory

applies. This appears to be the case with insulated antennas and wires 0

since transmission-line theory predicts their response very accurately. •*

The opposite situation exists, however, with a bare wire in the soil or

air. Although such a wire supports a guided wave that is approximately a

TEM mode, it is very difficult to excite. Indeed, if the wire were a

perfect conductor, an infinite amount of energy would be required to

excite the TEM mode.

0 The response of a perfectly conducting wire to a delta-function

voltage generator on the wire was investigated in Reference 3. It was

found that the results could be described by equations similar to

transmission-line theory far from the source only if the inductance term
was taken to be a function of distance from the source. The reason for

this behavior is that the source does not generate any modes in the wire.

Instead, it generates a wave known as a space wave that radiates out into

space. The transmission-line equations do not apply to such waves.

5
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The situation is much more complicated when the wire has finite

resistance. In that case, the source can excite both a space wave and

electromagnetic modes. One of those modes is approximately a TEM mode

that can be treated by transmission-line theory. The only way to deter-

mine the relative importance of these various waves is to solve the full

electromagnetic scattering problem. This is the purpose of the present

study.

In this report, the coupling to an infinitely long, finitely

conducting wire in homogeneous material is examined. An exact integral

expression is obtained for the current generated in the wire by a voltage-

generating source localized on the wire. The contributions of the space 6

wave and the individual modes are isolated by applying contour-integration

techniques. The contribution of the space wave arises as a branch-cut

integral and the contributions of the various modes rise as residues of

poles. Both the branch-cut integral and the residues are calculated 0

numerically to compare their relative importance. In addition, analytic

approximations for the space-wave current are obtained for points very

near and very far from the source.

Numerical calculations were made for highly conducting lines

(where the results reduced to those obtained in Reference 3) and for lines

with resistances representative of huried communication and power systems.

It was found that the TEM-type mode is not excited in wires with typical

resistances at the frequencies of interest. Hence, the space wave is the

dominant contributor to the current in these wires and consequently, stan-

dard transmission-line theory is not applicable. Moreover, it was found

that, with representative resistances, the current produced is quite -

different from the current that would be produced on a perfectly conduct-

ing wire.

6
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SECTION 2

INTEGRAL REPRESENTATION OF THE CURRENT

The problem of the current excited by a delta-function voltage

generator on the surface of a straight wire has been treated in the case

of a perfectly conducting wire by specifying the boundary value3,

E z= V0'S(z)

on the surface of the wire where Ez is the component of the electric

field in the direction of the wire.* When the wire has finite conduc-

tivity, however, we cannot specify the value of the field anywhere in

finite space. The problem is best treated as a scattering problem with a

specified field Ei incident on the wire generating a scattered field

Es that is determined by the boundary conditions at the surface of the

wire. The incident field is the field radiated by the generator if the

wire is not present. Our first task, then is to determine that field.

i.1

In a material with finite or zero conductivity, a voltage gener-

ator produces a discontinuity in the electric field across the generator.

The magnetic field can be continuous. In this study, the generator is

specified to have these properties in such a way that the current it

produces in the wire reduces, in the limit of infinite wire conductivity,

to the result already known for the current produced by a voltage genera-

tor on a perfect conductor. The same generator has been applied by Wait

and by Wait and Hill to study waves produced on cylindrical rods. (Those

This problem was introduced into the EMP literature in Reference 3. It

has a long history in the antenna-theory literature. See Reference 4
and the references therein.

7
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studies differ from ours in that they apply an approximate boundary condi-

tion at the rod surface). The generator can be thought of as a toroid

with very large current in a wire very tightly wound around a circular 0

ring that encircles the wire. It can be modeled mathematically by a ring

of magnetic current. We take the ring to lie in the plane z = U and to

have radius b which is larger that the radius a of the wire. Later, we

set b = a to put the source on the wire. S

Consider a monochromatic electromagnetic field with angular

frequency w in an isotropic homogeneous material. It can be expressed in

terms of axial Hertz vectors in the form 7  0

E(r, ,z)=VxVx[U(r,pz)1 z ] + iwjVx[V(r, ,z)1 1, (la)

H(r, ,z)=Vx[nU(r, ,z)i ]+VxVx[V(r,,z)l I (Ib)z z

in SI units where the scalar potentials satisfy the inhomogeneous Helm-

holtz equation

(V2+k2 ) U(r, ,z) = fu(r, ,z) , (2a)

(V'+k2 ) V(r,€ ,z) f fv(r,. ,z) (2b)

with source functions fu and fv that are nonzero only on sources or on
-it

boundaries separating different materials. The time behavior e has S

been suppressed in (1) and (2) and k and n are defined by

= (n , (3) - I

- , .'. .

. . .
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n = -(4)

where P, , a are respectively the permeability, permittivity and

conductivity of the medium. We apply the cylindrical coordinate system

illustrated in Figure 1.

1.,E2,02 r

11,96 1 1 b 1 a
z

z=0

Figure 1. Magnetic current loop around a wire.

It follows from (1) that the axial components of the fields are

given by -

a
2

Ez(r,¢,z) : (k2 + -) U(r,4,z) (5)
Z az2

a2

H (r,,z) = (k2  + a ) V(r,4,z). (6)
z 2Z 

- " -' _

Since the generator produces an axial electric field but no axial magnetic

field, we assume that it is a source of the potential U but not of poten- 0

tial V. Since the scattering by the wire does not introduce any axial

magnetic field either, we take V to be zero for both incident and --

7
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scattered fields. Moreover, from the symmetry of the problem, the poten-

tial U(r,4,z) is independent of ~.For such fields, (1) reduce to

E (r,z) =Urz)(7a)r aa

E (r,z) 0 ) (7b) 0

E (r,z) =(k2+.~ U(r,z) ,(7c)
z az 2

H r (r,z) =0 ,(7d)

H (r,z) = arz)(7e)-
* Dr

H (r,z) =0 (7f)

zp

and (2a) reduces to

2
-(r) + + k ]U(r,z) =fU(r,z) .(8)

r ar 3r z 2

We now Fourier transform (7) and (8) with respect to z using the

conventions

ih0
A(h) =f A(z)elh dz ,(9a)

OD

1 1ihz
A(z) . A (h)e dh ,(9b)

10
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to obtain (for the nonzero components)

DU(r,h)
E (r,h) ih (lOa)
r 3

i,2(r,h = c2 (r,h) ,(10b) -i-

H (r,h) -n au(r,h) (lOc) .

ar

(r i_) + a2] 6(rh) = fu(r,h) , (1i)
r ar ar

where*

cx= /-h2 (12) -

We are now ready to solve for the field radiated by the

generator without the presence of the wire. We use a superscript i for -. -

this field to indicate that it is the incident field in the scattering

problem. A subscript 2 is used on the material parameters E and a and the

corresponding quantities k,n,a defined in (3), (4), (12) to distinguish -

them from the same quantities within the wire which are indicated with

subscript 1.

Since the source function for the potential U (r,z) is zero

everywhere except on the ring of radius b in the plane z=O, we have

fu(r,z) = - (r-b)6(z) , (13a)
U r

* For real h, the branch of the square root in (12) is chosen so that the
imaginary part of a is positive or zero. The branch used for complex h -
is defined later.

• °" . • ' .°",



and therefore have

f (r,h) K (r-b) (13b) -

r 

Hence, for r*b, (11) is Bessel's equation of order zero with solutions

Ui(r,h) CI H I)(a 2 r) for r>b , (l4a) .

Oi(r,h) = C2Jo(a 2r) for r<b , (14b)

-0

where the Hankel function in (14a) was chosen to insure outgoing waves at

* r=0 for positive a2 and the Bessel function in (14b) was chosen to insure

* a finite result at r=O.

The ratio of the constants in (14) can be determined by requiring ..

the continuity of H(r,h) across r=b. According to (lOc), this means that

the r derivative of U(r,h) must be continuous. Since the derivatives of

the Hankel and Bessel functions with respect to their argument* satisfy 8

-(1)(ar) -H 1  )(cr) , (15a)

Jo(ar) = -Jl(ar) , (15b)

we find

C2 _ H1)(ib) (16) -

C1  J(c 2 b)

• We use a dot over a function to indicate its derivative with respect to
its argument.

.12..
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Hence, (14) can be written

U' (r,h) = CoJ1 (02b) HO() (a2r) for r>b , (17a) -

Ui'(r,h) CoH( 1P)(a2b) J0 (a2r) for r<b. (17b)

We can solve for the constant Co in terms of the discontinuity

in U (r,h) across r=b, but that is unnecessary. We determine it later in

terms of the voltage V0 across the generator. Also, we could now assemble

the expressions for the incident electromagnetic field, but again, there

is no point in doing so. It is most convenient to solve the scattering

problem in terms of the potentials in Fourier space.

To that end, consider an infinitely long straight wire with

circular cross section of radius a. The axis of the wire lies along the z

axis. The permittivity and conductivity are I and a, respectively in the

wire and E2 and 02 outside the wire. The permeability is taken to be P in

both materials. We take the radius b of the generator to be slightly

larger than a so that its field is incident on the wire from the outside. p

After solving the scattering problem, we can let ba so that the generator

is on the surface of the wire. The geometry is shown in Figure 1.

The incident field excites a scattered field with potential

function US(r,z) that propagates outward away from the wire in the outer

material. The total field inside the wire has potential function

Uw(r,z). Both US(r,z) and Uw(r,z) satisfy the Helmholtz equation . -

(2a) with fu=O, and with k replaced by k, in the inner material and by -0

13

0 ,.



0

k2 in the outer material. Hence, the Fourier transforms US (r,h) and

UW(r,h) of US(r,z) and UW(r,z) respectively satisfy Bessel's equation " -'

with a defined in (12) replaced by a, = in the wire and
2 21

12 2 h outside the wire. Hence, we must have

U (rh) aAHO ( 2r) for r>a , (18a) - -

S

U (r,h) BJ0 (ajr) for r<a , (18b)

where the particular solutions to Bessel equations were chosen in the same

way as in (14).

The constants A and B in (18) can be determined by applying the

boundary conditions that the tangential components of the electric and

magnetic fields must be continuous at the surface of the wire. According

to (10), this means that a2U(r,h) and naUrh) must be continuous there,

where U(r, h) is the Fourier transform of the total field. Outside the

wire, U(r, h) is U i(r,h) + U S(r,h) whereas inside the wire it is UW(r,h). S

Hence, with the use of (17b) and (18), the boundary conditions become

2 ( 2(1 2
Coa 2HI) ( 2b)J(c 2a)+Aa2HV'(c 2a) + HB2 1,j(ala) (19a)

Con 2Hj')(a 2b)a2J0(c2a)+An 2c2HI
1 )(c2a) = BnIalJo(ala). (19b)

With the application of (15), (19) becomes

2 (1) 2 2 (1)
Aa2Ho (a 2 a)-BaJo(a l a) = -C oo2 H, (a 2b)Jo(i 2 a) , (20a)

14
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-Ari2a2H, (a2 a) + Bnja 1Jj (ala) =C~ri2a2fI, (a2b)J1 (c 2a). (20b)

Solution of this pair of simultaneous linear equations yields

A -CH (a2 b __la2J ___a)J __ola)_aJl __a)J____la) __

(21a)

a = 2 H0~~ab H1 1 (a2 a)JO (a2a )-HO (cz2a)J 1 (a2 a)

1a 2 11HO (I(a 2 a )JI(a, a)-uI1n2 H, 1 (L2 a )JO (a, a)

(21b)

The numerator in (21b) is a Wronskian known to satisfy 9

HIM ~(Z)JO(Z) -O H0 'MZJI(Z 2 ~- (22)
Wiz

Hence, (21b) becomes

2rCi~ H, (a2)

2 2
According to (3) and (4), ri2/nI k k 1  Hence, (23) can be rewritten

2
2C~a2k H a

- (24)

We now have everything we need to calculate all field quanti-

ties. Since our primary interest is in the current generated in the wire,

15



*we will concentrate on the field inside the wire. From (18b) and (24),
* the Fourier transform of the potential of the total field inside the wire

is Z

*w) -2C~c k2  H,~ (I(a 2b)J0 (a1r)

irial a 2 (1) 2 (1)
ct2klH0 (a2 a)Jj (ala)-a, k2 H, (a2a)JO (a, a)

for r < a. (25) .0

The Fourier transform of the z component of the current density satisfies

2 w
Jz(r,h) ajoEw(r,h) a al1U(r,h) (26)

and the Fourier transform of the total current flowing along the wire is

the integral of J(r,h) over the cross section of the wire

a
I (h) 2wf" J (r,h) rdr. (27)

0

10S
Hence, by combining (25) -(27) and employing1

a a
f rJO(ci~r)dr r j1 (a1r) a JI(a 1a) ,(28)
0 a10 1l

we obtain

* 1(h = -4C 0a2k 2 H1( ) 2 b) J,(. 1a)
i 2 P1 2 P1

a2k1IHO (a2 a)J (ahla) -axlk 2HI (a2 a)JO (ala)
(29)

16
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The desired integral expression for the total current I(z) flowing along

the wire follows immediately if we take the inverse Fourier transform of

(29) according to (9b). The result is -

2k2o 1  C0ca2H1 (1) (a2b)J(aja)eihz dh
f 2 (1) 2 (1) - .- kH () ( la)-alk2H (ct2a)Jo(cila)

Oi L 2k 1Ho a2a) J I (laa 2H I taJ0,a

(30)
S

The expression in (30) is similar to the formula applied by Wait

and Hill 6 to treat the current generated on a metallic rod by a magnetic

ring current. Their formula was derived 5 by assuming an approximate

impedance-type boundary condition without specifying what the impedance

actually is. Such boundary conditions are known to be useful when one of

the materials haL a large but finite conductivity. If we replace the

factor o outside the integral sign in (30) by n, so that I(Z) includes
2the displacement current or if we approximate k, in the first term in the

denominator by ipwo1 , then (30) becomes equivalent to the formula in Wait

and Hill 6 if we take the series impedance of the wire to be

- aJ 0 (a a) (31) .
s 2ianJ I(cla)

and our constant Co to be

ib
C : -i- K , (32)

2 L2

where K is the strength of the magnetic ring current. The expression for

the series impedance of a wire given in (31) is one that has been used in -

the EMP literature when the definition of Zs is taken to be

Ez(a,z)/l(z) for axisymmetric TM fields. 
2

17
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0

We can express CO in terms of the voltage V0 across the voltage

generator by relating (30) to the known result for the current produced on

a perfect conductor by a voltage generator. To that end, we let b=a so -

that the source is on the wire, and consider (30) in the limit as o-.

In that limit, the second term in the denominator in (30) is neyligible
2

compared to the first and oj/k+1/(iju,). Hence, we have

2 (1)
2k2  COHI (a2 a) h

lim I(z) = f eihzdh. (33)
01- 7 H)( 2 a)

3 4
This corresponds to the known expression in this limit , if we take

CO .L a V0  (34)
2a2

Comparison of (34) and (32) shows that the magnetic ring current of •

strength K is a voltage generator of strength Vo .

.V

The current can now be expressed terms of the ,oltage V0 even

when the generator is not on the wire by changing a to b in (34) and

substituting into (30)

21 ) 2 b)Jd (aa)eihz dh

I(z) Vok 2 oGb f 2(1) 2 (1) dh
a 2 k2H0  (a 2 a)Jl (aa)-a, k2 H, (a 2 a)Jo(ala)

(35)

18
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Equation (35) presents an exact integral expression for the total current

generated by the source as a function of distance along the wire. Unfor-

tunately, it is difficult to determine the properties of the current from

the integral in its present form. In the next section, we transform the •

integral into a form which is more amenable to asymptotic and numerical

analysis. Moreover, the transformed result provides new insight into the

physics of the current flow.

II

1P
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SECTION 3

TRANSFORMATION OF THE CURRENT INTEGRAL

In this section, we transform the integral in (35) for positive S

z by completing the contour of integration in the upper half plane and

applying Cauchy's theorem of the residues.* To that end, we rewrite (35)

in the form

1(z) = -Vok 2albP(z) , (36)

where

P(z) = f L(h)dh , (37)

<1 ')(.2h)J(aa)eihz
L(h) 2 2 1, (38)

~ 1 k2
1k2 H I) ((a2a )Jd°(ala )-a2k I H )( 2a)d ( a, a) -" -

and investigate the analytic properties of the integrand L(h) in the upper

half of the complex h plane.

*We apply a procedure that is standard in the theory of guided waves.
Eg., se Reference. . .. .



3.1 MULTIVALUED FUNCTIONS AND BRANCH CUTS

The integrand L(h) involves multivalued functions a,, a2 , and

H '(Z) which must be made single valued by specifying the branches to be

used. For a,, we choose the branch cut to be the curve* in the complex h

plane where** ci=O. This branch cut is shown as a dashed line ending

at the branch points h=±kl in Figure 2. We take a" >0 on the top

Riemann sheet and a" <0 on the bottom Riemann sheet. For x2, we take the

branch cut*** to be the vertical lines terminating at the branch points

h=±k 2 that are shown in Figure 2 as wiggly lines. The dashed curves

terminating at these branch points are curves where a2=O. In the shaded

region between each of these curves and its closest branch cut, a" is

negative on the top Riemann sheet. Elsewhere in the complex plane, a" is

positive on the top Riemann sheet. It follows from these definitions and

the original definition of a given in (12) for real h, that the 0
integration contour in (37) is on the top Riemann sheets of both Oi and

For the Hankel function Ho (Z), we choose the branch cut to lie

along the negative half of the imaginary axis in the complex Z plane.

This differs from the standard definition of H0 (1)(Z) which uses the

negative real axis. Our branch of the Hankel function is chosen so that

it is equal to the standard Hankel function in the upper half of the Z

plane. The branch cut fo. the Hankel function H0 ( )(a2 a) occurs only on

the lower Riemann sheet of O2. On that Riemann sheet, it lies along the

dotted curve shown in Figure 2.

* This branch cut is frequently called the Sommerfield or the fundamental

cut. See Reference 11 for a discussion of the characteristics. -.-

** We use the notation that Z' is the real part and Z" is the imaginary

part of any complex quantity Z.

* This branch cut is called the vertical branch cut. 5
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-k 2 :

Figure 2. Complex h plane.

Even though the point hkl is a branch point of ait turns out

that it is not a branch point of the integrand L(h). To see that, we

temporarily write L(h) as L(h,oq) and examine the value of the integrand

on the opposite Riemann sheet of a,, by evaluating L(h,elliaj), the result

obtained when the sign of a, is changed in the right-hand side of (38).

We have

22
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2 . .

0

L(h,e"t i cj) =____H'(z)ie~a eh

eni alk 2H~ (aza )J a(eff xaa a, kiH)(aza )J i(e'iaia)

(39) 0

With the application of8

n(&" ITjZ) e e'70 n (z) ,(40)

0

(39) becomes

_______q e'TiH( 1 )(a 2 b)JjIctja) ________

e1Ii c k 2H 1 (-2aiJ 0 (:aja) -e'Ki k 2k H 1)(aa)j 1 (aja)

-L(h,cz 1). (41)

Hence, L(h) has the same value on both Riemann sheets of a,.* This means

that the point h=kl is not a branch point of the integrand.

3.2 POLES

The integrand has poles where the denominator

0(h) cI k H ')(0 2a)J,(ctja) -a 2 k'H( 1' (c12a)J,(cLja) (42)

0

*is zero. The equation

0(h) =0 (43)

is a complicated transcendental equation that can not be solved

* analytically.
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0

For the case of interest, however, it is easy to obtain a rough

idea of the locations of the poles in the complex h plane. Since the

conductivity of the wire is much greater than that of the outer material, 0

we have Ikj>>Ik 2I. This means that, in order to have the second term in

(42) be as small in magnitude as the first term, h must be near a zero

of a2H(1)(a 2 a)J1 (aja). Since our branch of HO 0(a 2a) does not have any0n

zeros*, the poles must be located near h=k 2 (the zero of a2 ) and/or the

zeros of JI(ala). Since the zeros of J1 (Z) are all real, all poles that

are not near h=k 2, must lie near the a, branch cut (where a=O) shown as

the dashed curves terminating at A+k in Figure 2. In the limit as k,

tends to infinity, the poles near k2 tend to k2 whereas the others tend to 6

i n f inity.

2

For very large jhI, k, can be neglected compared to h2 in the

expression (12) for a, leading to ,

a, = ih for h'>O , (44a)

a1  -ih for h'<O . (44b)

In this region, the large-argument approximation

J( -2cos(Z 3 i2 sin(Z (45)
4IM F(45)Z

can be applied to obtain the locations of the zeros of Jd(ala). This

shows that any poles present in this region, must be located near the

poi nts

h" : ± (N + IT (46)

on the imaginary axis for large integral N.

* See Figure 9.4 of Reference 8. The zero shown in the third quadrant is
on a diffPrent Riemann sheet when our branch cut is used. Numerical
calculatiuis have shown that no zeros exist in that quadrant for our
branch.
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3.3 COMPLETION OF THE CONTOUR

For positive z, we consider the integral

Pc (z) = f L(h)dh (47)
C

with the same integrand as the integral P(z) defined in (37) but evaluated

over the closed contour c shown in Figure 2. The contour passes from

h'=-R to h'=R along the real axis and then along a circular arc of radius

R into the upper half plane until it reaches the a2 branch cut. It then

passes down along the branch cut, around the branch point at k2 , and back

up to the same height on the branch cut as where it started. It then

continues towards the left along a straight horizontal line until h'

reaches -k,. From there, it follows a circular arc of radius R until it

returns to the real axis. As R tends to infinity, the real axis portion

of P (z) becomes equal to our original integral P(z). -.
- c

We begin by examining the value of the integral over the portion P

of c that is off of the real axis. On that portion of c, Ih+C as R+.
2 2 2

Hence, we can neglect k, and k2 compared to h in the definitions of al

and a2 so that a, satisfies (44) and a2= -ih to the left of the branch cut

and a2=ih to the right of the branch cut. Since it was shown in Section 0

2.1 that the value of L(h) is unaffected by a change is sign of a,, we

take al=ih for both positive and negative h'. For large Ih$, we can use

the large argument approximations8 ,

Jo(Z), -- cos(Z - D) , (48a)
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j (Z) sin(Z - -1) , (48b)
Fwz' 4F2 i(

H0  (Z) e 4, (48c)

(Z) -i Z e 4, (48d)

valid for large IZI to approximate the functions in the integrand given in .0

(38). The result is

L(h) = b e h(ba)+ihZK(h), (49)

where

sin(iha - .. .
K(h) : z (50) --

Tkj sin(iha - 4) - ik2 cos(iha - (50)
4 4

with the top sign applying to the right of the vertical branch cut and the .

lower sign applying to the left.

The factor K(h) is infinite at the locations of the poles which

- are near points on the imaginary axis with h" given by (46). In order to

make sure that c does not pass through a pole, we choose R to given by

R =(2N + )2i(51)
4 a

for large integral N. We then let R- in discrete steps by letting N+-. _

26
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Now, consider the portion of the contour that passes from
h' = k2 to h' = -k2 along a horizontal straight line. For large enough N,

h" is approximately equal to R on this line. Hence, •

h'= (2N + (52)
4 a

S

on the contour. Since the poles are near points that satisfy (46), the

value of K(h) is finite along the contour. Moreover, since the functions

in K(h) are periodic functions of hV with period of 27t for fixed h', K(h)

is independent of N. Hence, from (49), we have

IL(h)I I eh"z (53)

where M is the maximum value of a, IK(h)leh'(b-a) along the contour. Hence,

the value of the integral along this part of the contour tends to zero -

exponentially as N- for positive z.

Next, consider the curved portion of the contour. Here, we have

Ih'l+- as R+- . Hence

cos(iha - Tr/4) = (e-ha-i'/ 4 + eha+il/ 4) e±(ha+i/ 4) , (54a)
2 2

sin(iha - iT/4) = (e-ha-iTr/4 - eha+iiT/4 ) " 1 e±(ha+ilT/4 ),(54b)
22i '

for large R where the top sign is used for the right-hand part of the

contour and lower sign is used for the left-hand part. Hence,
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for large R. Combination of (55) and (49) yields

L(h)= :F a exp[(- Ih'ITih")(b-a)]eihz (5b)
bh (k 2 +k2 )

for large R. Since b-a>O, this is of the form

L(h)=f(h)eihz (57)

where ~ II12

where If (h)1 +U as h +00. Hence, it follows from the usual proof of
Jordan's lemna, that for positive z, the integral over this part of the

contour tends to zero as R-. 

Since the integral along the portion of c that tends to infinity
in the upper half plane has been shown to tend to zero as R+, the only .

portions that are left to contribute are the real axis and the branch

cut. We have

P c (z) = P(z)+B(z) (58)

where P(z) is the integral of interest given in (37) and B(z) is the

integral around the branch cut. According to Cauchy's theorem of the

residues 
12

P (z)=27 i R (z) (59)
c
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where Rj(z) is the residue of the jth pole and the sum is over all of
the poles in the upper-half plane on the top Riemann sheet of X2- Hence,

Of 2.- Hence,.

the integral of interest has been transformed to the form

P(z) = 27i R (z)-B(z) (60)

for positive z. It remains to evaluate the two terms on the right-hand

side of (60) and to interpret them physically.

3.4 COMPLEX MODES

The integrand in Pc(z) can be written in the form

(1) ihz
L(h) H I(c 2b)J(c a)e (61)

D(h) ..

with D(h) defined by (42). Since the poles hj occur at the zeros of

D(h) so that

D(h.)=0 (62)

31
the residue of the jth pole is given by

(1) ihz
R.(z) (63)

;(h) h=h-

Since its z dependence is of the form eihj z , we see that Rj(z)

represents a wave field with axial wave number hj.

29
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Comparison of (62) with Equation (16) of Section 9.15 of

Reference 7 shows that (62) is the equation for the wavenumbers of the

complex transverse-magnetic (TM) modes of the wire. Hence, Rj(z) is the

contribution of the jth complex TM mode and the first term on the right-

hand side of (60) is the sum of the contribution of all compl1ex TM modes

with wavenumbers in the upper half plane on the top Riemann sheet of a2*

To obtain the amplitude of each mode, we need to evaluate tJ(h).

By differentiating (42) using

d~a __1 2h h(4

dh 2 2 21/ a(k -h 2) 1

we find

D(h) =-h[151- H, (x J 0 (a 1 a+-zr-- H 1  (~) aa

+k~~~aH~~'~ (a2a)J(xa -kH' (t) (a~a )J(a

a+k a H (a~ )J aa

-kaH (aaJ a)H (a2a)3 (ala) (65)

The derivatives of the Bessel and Hankel functions are given by the

recursion formulas (15) and8

j (Z) JO (Z) J1 Z (6ba)z

HI (Z) HO H (Z) (66b)
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Hence, (65) becomes

2 ( )( a  2 PI H}i )(:a2 ] a 0 a

D(h) -hL2 H, )(o2a)JO(aja)+1-ak2 [H0  (a2a) I Ja,2a a.

2.•

-k2 aHj )(a2a)J1 (.,a) - _kL HO (a2 a)J (ala) + •
a2

2 (1) 2 (_ J (aa)
+kjaH1  (a2a)J(ala) - 2ka HO (a2a)[Jo(ala) - (la)].( 6 7 )

Combination of terms and application of

2 2 2 2
=2-a = k2 -kl (68a)

2 2 2 2 2 2 2)

alk 2 2 = h (k2-k 2) , (68b)

yields

2 2
D 2 2 k2  (1) ah
D(h) h(kl-k2)[---- H1  (c2 a)Jo(al a) Ho (c2 a)Jo(a, a)

2 Sl22

Pl(2 k PI >>

-aH1  (a 2a)JI (a 1a + T (a2 a)J (aa)] (69)

It follows from the equation (43) for locations of the poles

that the first and last terms in the square bracket in (69) are equal when

6(h) is evaluated at a pole hj. Hence,
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20

S2(k -k 2( 2 (1)
(.) = I 2k1U0 )(a 2 a)JI(a a) _ ah a, 0  (a 2 a)J (aja)

2 (1)
-actlc 2 H, (a 2 a)Jd (ala)] . (70)

where h in a, and a2 is to be evaluated at hi. Equation (70) is the

final exact expression for 6 (hi) to be substituted into the expression

(63) for the residue of the pole hi.

The properties of the modes of a wire in air have been studied .40

by Sommerfeld (see Reference 14 for an account of Sommerfeld's results).

He found that there is one mode with wave number h0 near k2 on the upper

Riemann sheet. He called this mode the principal mode and the others he

called secondary modes. The secondary modes are attenuated much more than

the principal one. In fact, since the wavenumber of the secondary modes

lie near the dashed line in Figure 2 that goes above k, in the complex

plane, h">k for all of these modes. Hence, they are attenuated

even faster than is a plane wave propagating in the metal. This shows -

that the secondary modes are damped immediately and can be neglected after

a very short distance along the wire. For this reason, we now concentrate

on the principal mode, which we label by j=0.

Since ho=k 2 and since ki >>jk 2 , the second terin in the square

brackets in (70) is negligible compared to the first term. Hence, the

expression (63) for the residue of the pole becomes

2 1ihoz -

RO(Z )  al I2HI ("W t)e , (71) """' "
ho 2 i 2) 2 1 )( 2 )(. .(kz I k-k 2 2k 1HO(a a)-a at Hi2 Hj a 2a)] '-(71)

LJ 2 (1

.0



where h in ai and (2 is to be evaluated at ho. Next, we apply the
2 2 2

approximations k1-k2 = k1 and a,= k1 to obtain

S 2H( 2b)eihozR 0 (z) a2 __- -- (72)
h 2kH1 (1 ((u2a)-aa 2H (x2a)

Finally, since la2b is very small for the principal mode, we apply the 0

small-argument approximations of the Hankel functions*

H(1(Z 2i ,r (73a)
ir 2i

Hjt(Z) = __i (73b)

valid for small I where r=eY and y=0.577216 is Euler's constant. The

result is

Ro(z) =- eihoz (74) •

bhokj[21n(L-3-- + 1]
2i

where a2 is to be evaluated at h=ho.

Reference 8, page 360. The factor 1/i in the argument of the logarithm

in (73a) accounts for the contribution of J0 (z)= 1 for small Izi. We
apply the principal branch of ln(z) which has branch cut lying a ong
the negative real axis. With this choice, the right-hand side of (73a)
has the same branch cut as the left-hand side.
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According to (60), the contribution of R0 (z) to the integral

P(z) is 2wiRo(z). Hence, it follows from (36) that the contribution

Ip(z) of the principal mode to the current in the wire is

2
I= - Vok 2 alb2niRo(z) (75)

Application of our approximate expression (74) for the residue Ro(z)

therefore gives

2 ihoz
I - 27riV~k2aje (76)(i.A a ...
p hok 1l21n 2i

2 1

Since oi/kl+(ipwF as ol+- [see (3) and (4)], we see that Ip+O as ai+-.

This means that the principal mode is not excited by the generator if the

wire is perfectly conducting.* It should be noted, however, that Ip 0

tends to zero rather slowly as a1 tends to infinity because in(a2a) tends

to infinity slowly. This means that the contribution of the principal

mode to the current might be significant even with highly conducting

wires. To answer the question definitively, it is necessary to solve for S

h0 numerically in order to obtain an accurate value of a2.

Another important question that must be answered numerically is

whether the wavenumber h0 lies on the upper or lower Riemann sheet. For S

the case treated by Sommerfeld (see Reference 14), it is known that ho

lies on the upper sheet. As the parameters vary, however, ho can cross

the branch cut to the lower sheet. In that case, the residue of the pole

does not contribute to the current. 0

It can be shown easily that the same is true for all of the other modes

as well. This is the reason that modes do not appear in the analysis
in Reference 3.

. - -
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3.5 SPACE WAVE

In order to obtain a physical interpretation of the branch cut

integral B(z), we examine its asymptotic behavior for large z. Since the

imaginary part of h increases as we move up either side of the branch cut

from the branch point k2, the integrand L(z) decreases exponentially.

Hence, for large enough z, only the vicinity of the branch point contri-

butes to the integral. Near the branch point, it is useful to write D(h) 0

in the form

2(h) a (1)(a 2a)Jo(ala) [ - a2k H~ (c2a)d1 (1a) (77)2

azk 2H ) ( 2a)J(aa)

Since 12=0 at the branch point, the second term in the bracket is much

smaller than 1. Hence, we can expand D-1(h) in the form

20
- 2 a H[ 2a a)J-cl.).I [a~k2Hi )( 2a)Jo(aa)-

1[1+ C2 k 1H )(c2a)Ji(Qa) +1... (78)

D(h) alk 2H
t )(a2a)Jo(aja)

Neglecting the higher order terms and substituting into the definition

(38) of the integrand L(h), we find

2L(h) " H)( 2b)d1 ( 1a) [i 2kH ( 2a)dt( la) ]eihz (79)

K ikzH I )(a2a)Jo(ala) a k H(1 )(a2a)J(a 1 a)

Since Lc2fb 2 are small near the branch point, we apply the

small-argument approximations (73) for the Hankel functions in (79).

The result is
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ai aJ(a, a) ak a2 jI(a in )F~~L(h) n I~j0 aa '2 ihz (0
balk 2jo(ala) a J(la

We next determine the discontinuity of L(h) across the branch

cut which results from a change in sign Of a2 - We have

2_2
a2  2 k2 h +h Vk2 -h (82)

The first square root in (81) is the same on opposite sides of the branch

cut because k2+h does not change as h encircles the branch point. The

second square root, however, is different. The argument of k2-h is -nr/2

on the left side and 3wr/2 on the right. Hence, the argument of NFkT~h is

-n/4 on the left and 37r/4 on the right. Since lnz=ln Izl+i(argument of z)

with -n<(argument of z)c<7r, the discontinuity of the logarithm in (80) can

be written

ln (r2a ln( 2a = it (82)
2i Ileft side- 2i Iright side

The corresponding discontinuity in L(h) from left side to right side is

therefore

'Ti ak J (ala)a2 2 eihz (83)
k20 aa)al

As a result, the branch cut integral is

3()~ ai~~~a 2B 0 ,(84)

b k Z J0 (&Ia )a
2S



where

&I k _k2(85)

k2iO2 ihz
BO f a 2 e dh. (86)

The inteyral BO can be evaluated exactly. Let

h =k 2 +iK (87)

Then BO becomes

BO f [k2- (k2+2iKk 2 -lc2) eik2Z e~Zc

=ieik2Z(3~2  + 2ik2L-) f e -KzdK
3 z 3 z 0

i iek2Z( 32  + 2ik 2 -a

= i 2 kazlkz z 8
zz

Substitution of (88) into (84) yives the asymptotic expression

2
_2_T______ 1-jk~z ik2z (9

B(z) = - -- ( 9b kJ 2j &1a)^
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valid for large z.

For high frequency applications, the factor in the brackets in

(89) can be simplified by using the approximation a, = k, and noting that

kj a>>1 for typical wires. 14Hence, we can use the large-argument

approximations (48a-b) of the Bessel functions. Since kia has large

positive imaginary part, (48a-b) can be written

Jo(&ja) 1 - e-i(ka-ir/ 4 ) , (90a)
Ir2ik 1 a 

Jl(&la) "i e-i(k a-r/4 ) (90b)
t'27k 1a

* Consequently, we have

Jl(la) (91)

,o(&a)

The approximate expression for B(z) then becomes

2
2 ra 1-ik 2z ik2z (92)

B(z) =- -,4--3 e (2
b k2z

for large z and high frequency.

The contribution IB(z) of the branch-cut integral to the

current in the wire is found by combining (89), (60) and (36) to obtain

" 27TV0aj [a k d l ( &Ia ) ] 2 l-ikz eik 2Zz 93
I (z) 2Z- 2e (j9(la)]
B k 2  a) iz e 2 (3

2 1 0 1

for large z. P
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The quantity B0 given in (88) is proportional to the z component

of the electric field radiated by a point electric dipole'5 located at the

origin in a homogeneous medium with wavenumber k2. We are led, therefore,

to the following physical interpretation. The branch-cut integral yields

a current driven by the component along the wire of the electric field of

an electromagnetic wave that is radiated out by the generator. Far from

the generator, this wave has the same spatial dependence as it would have

if it were being radiated in the outer material without the wire present.

The primary* effect of the wire is to weakly influence the magnitude of

the wave through the multiplicative factor in (84). Note that this is

true even inside the wire, where the wavenumber is very different from p

k2. Because of these properties, the electromagnetic field corresponding

to the branch-cut integral is frequently called a "space wave.""1  It is a

field that is radiated into space rather than being guided by the wire (as

are the modes). The geometrical factor (1-ik 2z)/z
3 occurring in (93) is

due to the "radiation spreading" of the wave. The reason this fall off is

* -faster than the 11z behavior of a radiation field is that the current is

produced by the z component of the electric field which is the radial

component. The radiation field that falls off as i/z is the transverse

electromagnetic field which does not generate currents along the wire.

Although the approximate expression (92) for B(z) is independent

of wire conductivity, the range of validity of (92) is highly dependent on

a,. This is evident from the derivation of the result. In order for us

to be able to apply the expansion used in (78), it is necessary for the

" .second term in the square brackets in (77) to be much smaller than one in

magnitude over the portion of the branch cut where the integrand is not

negligible. But the magnitude of the second term grows rapidly with

".'" increasing distance from the branch point because jk, 2/ k21
2 is large.

* There is another "effect" of the wire discussed in the next paragraph. b
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Hence, z must be large enough so that the factor eihz causes the inte-

grand to be negligible all along the cut except very near the branch

point. The larger is the conductivity of the wire, the faster the second •

term in (77) grows and therefore the larger z must be in order for the

result (92) to be valid.

We now obtain a rough estimate of the range of validity of S

(92). The second term in (77) is nearly equal to 1 at the locations of

poles. The pole h0 is located very near and slightly above the branch

point.* Hence, the second term in (77) becomes comparable to 1 when the

point of integration on the branch cut reaches the height ho of the pole.

Therefore, in order for our expansion of (77) in the form of (78) to be

valid, the factor e-hz must be negligible compared to ek2Z. The first

quantity will be down by a factor e- compared to the second if

(-ho+k")z = -1. Hence, the asymptotic result is valid if z is much larger

than the distance

z (94)
c h 0 -k,

This distance can be very large because h0 can be very close to k2. Since

ho approaches k2 as the wire conductivity increases, the asymptotic result

is valid only at very large distances for a highly conducting wire. As

a,+-, the result is not valid anywhere.**

It is helpful to consider a specific example. Sommerfeld has

shown14 that

This is known from previous numerical studies of the principal mode.

See Reference 14.

•* In this limit, the results of Reference 3 and 4 are valid.
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ho k2[1+(6.0+6.4i)10
- ] (95)

for the case of a 1mm radius copper wire in air with frequency of 109 Hz.

Since k" = 0 for air, (94) and (95) together require that 0

4
k2zc 1.6x1O

Hence, z must be much more than 2.5x1O 3 wavelengths in air or about 720m

for (92) to be valid in this case. Other numerical examples are presented

in Section 3.

3.6 NEAR ZONE

Since z must be so large for the asymptotic result to be valid,

we obtain in this section a rough idea of the behavior of the current much

closer to the source. We wait until later to specify how small z must be

for the approximations to be valid, but it can be stated at this point

that z must be much less than zc. On the other hand we require that z

be large enough so that the small-argument approximations can be used for

the Hankel functions over the portion of the branch cut where the

integrand is not negligible.

On the branch cut, we have h=k 2+iK with K>O according to (87).

Since
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p2
(k2+h)(k 2-h) =-2ik 2 K (96)

for small K, we see that the arguments of the Hankel functions are small --

if <<<(21k21b
2)-. We want the integrand to be negligible for K outside S

this range. To that end, we require that z>>zd where zd is defined by

2
Zd = 21k2 b (97)

Then, the integrand is negligible for K too large for the small argument

approximations to be used because

O

i (k2+i K)Zd/e ik2Zd e1 (98)
<e- (98)-

for k > (21k 2 lb
2 )-". Hence, the region of interest satisfies -

zd <<z<<zc (99)

with zd and zc defined by (97) and (94) respectively. Since

>>2b k 2 (100

0 2

for highly conducting wires with small diameters and with the source near

the wire, (99) covers a wide range of distances.

We now employ the small-argument approximations (73) for the

Hankel functions in the expression (38) for the integrand

L(h) aJi(ata)eihz . (101):~h (101) " ..
2 2 ra

baik 2J0 (ala)+aba 2k IJI(ala)n (
2i
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This expression can be simplified further by noting that when h is near

k2, al1 kl for klI 1k2J. Then (101) becomes

L(h) ad 1 (k ia)ei hz  (102)

bkl[k 2J 1(k la)+ak ia2Jl(k a)In(-2a )

The discontinuity in the logarithm in (102) across the branch

cut has already been discussed and is presented in (82). It follows from

that discussion that the argument of [(k2-h)/i ]1/2 is given ny

arg i(h-k 2 ) : ± (103)
2

on the branch cut where the top sign applies to the right side and the

bottom sign applies to the left. Hence, the logarithm can be written

ln(Ic2a) : ln( a1 ni1+() +-k2
2i 2

: ln (L_ T22) + n ±,
2 2

- K i (104) 0

where the approximation k2+h 2k2 has been used. To eliminate the square

root in (104), it is convenient to write

ln(. ) 2a =- [In(A-)) ± "ri] (105)
2i 2

where
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0

2 2
A=r a k2A i (106)

2i0

Substitution of (96) and (105) into (102) yields

L+ ()-aJj (ka)e' hz (17() bklk 2{k230 (k~a)-iKak1 Jl(kja)[ln(AK)±ri]} I 17

where L+(h) is the integrand on the right side of the branch cut and K.(h)

is the integrand on the left side of the branch cut.

Since the contour of the branch-cut integral passes down the

right side and up the left side of the branch cut, the integral can be

written

B3(z) i if [L..(h) -L+(h)]dK (108)
0

with h k2+iK. If we introduce the constant

W O (k Ia) ,(109)

J1(kja)

the integrand in (108) becomes

L_(h) -L+(h) = a 1 riZ(110)
bkl( 2  [i Wk 2 ia k K In(AK)1 a k 17TK)

Hence, the branch-cut integral is
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2. -

B(z) : - 2ria eik2Z f e-<d s - (11i) "
bk2  0 [Wk 2+ak I K1 n (A K) +(ak 1 1K)

We note that for high-frequency applications when the

large-argument approximations can be used for the Bessel functions, then W

reduces to I according to (91). Otherwise, W is a constant that depends

on the frequency and the properties of the wire.

For K very near zero, the denominator in (111) is dominated by

the first term Wk2 in the square brackets. The second term grows very

rapidly with increasing K, however, because k1>>Ik2p, and eventually it

dominates over the first. Let Km be the smallest value of K such that

Wk2 can be neglected in (111) for K>K m. Then B( ) can be approximated by

B(z) = Bm(z) + Bp(z) (112)

where

2 K: -KZd

B (z) - 2iia eik 2z K (113)
m bk2  0 [Wk 2+akKln(AK)]+(akKlt)

2 7,i ik2z e-<Zdc
B (z) e- 2 e f - - zdK . (114)
P bk k2  Pm K[ln (A<)+-2

It is difficult to learn much about Bm(z) without employing

numerical techniques. Two points can be made, however. First we note

that for* zd<<z<<i/Km, the z dependence of Bm(z) arises only from

the factor eik2z. Hence, Bm(z) does not decrease due to the

geometrical spreading of the space wave. Secondly, we note that since

K j~'as 1i3-, Bm(z) tends to zero as the wire tends toward a perfect
*il II

Since Km>ho-k2, this restriction requires that z<<zc.
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conductor. This means that Bm(z) may be small compared to Bp(z) for

highly conducting wire.

We now turn our attention to Bp(z). The integral in (114) is

the same as occurs in the treatment of a perfect conductor in Section 4 of

Reference 3 except that (a) our factor A defined* in (106) is complex

whereas it is purely imaginary in Reference 3 and (b) the lower limit of

our integral is im whereas it is zero in Reference 3. As a result, we

can approximate Bp(z) by the procedure used in Reference 3 with minor

modifications.

To that end, consider the integral

- _- Kz d  .-.-

l(z) = f e d (115)
i ic[ln (Aic)+L]r

Because of the factor e-Kz, the integrand is negligible for K larger

than some number a which is small enough that ln(Ai) >>7t for <<a. Hence,"----.

the term in the square brackets can be expanded in a binomial series to -

obtain

I(z) = i n (116)

n1 n

where

I =(_)l2n-2 f e (117)
n icm ,ln2n(AK)

* Note also that our A is defined differently than the A of Reference 3. --•

4
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We now change the integration variable to

= -ln(AK) (118)

to obtain

exp[- z e-].

I (_l)n+1,2n-2 f A de (119)
n c c2n

where cr is a horizontal straight line a distance arg(A) below the real

axis in the complex c plane starting at ---iarg A and ending at

-ln(AKm).

z -

The exponent - - e is real and negative all along c . Hence,
A

the integral over the portion of the contour to the left of

0= -ln(A/z) (120)

can be approximated by

Co exp-z e-C]
I(-)= (-l)n+lT2n-2 f A de (121)
n ---iargA Co2n

because the integrand decays so rapidly as C moves away from CO along c4

to the left.
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A

In the integral to the right of co the exponential term

exp I- z- e-C] is approximately equal to one except in the immediate0
A

vicinity of Co. Hence, we approximate this integral by

-()n~lff2n-2 f-ln(AKM) [ 1 + Ax[ -Ze- dC

n CO 2n 02n

n+1 2n-2f 1 1 2n -1 I 1 I

2n-1 -ln(Ar,,) 2n-1 02n-1

ln(AK )-ln(AK )

+ _ + f expL- -'] d~}. (122)--
C02n 02n-1 C02n CO A

The total integral is then

- i) -)n+1 2n-2i 1 [1 12n-1 + 2n +
n n n 2n-1 l(m)(2n-1) Cn-l

+ln(AK) 1 exp[- z~ e.]~ (123)

+ 02n _ 0 2n C A

By changing the integration variable back to K, the integral on the

right-hand side of (123) becomes

I exp -!ejd e_ ___ dK = j( Z) ,(124)

K m
c A K

4 8)



where El(Kmz) is the exponential integral of order 1. For Z<<l/Km, we

can apply the small argument approximation of E j(KMZ).

Ej(Kmz) =-ln(PKmz). (125)

Hence, the integral In can approximated by

(-1) n+1 2n-2 ~1 1 2n-1 2n 1 2n -1I
n n- lnA 0 )2n-1 ln(A/z)

+ ln[A/(rz)] (126)
lnO(A/z)

for z d<Z<I

From the definition of A given in (106) and zd given in (97),

we have

222

Since F24=0. and a<b, the condition that z>>zd guarantees that J~ z<

and I ln(A/z) I>1. hence, it is useful to note that (126) shows that

11201! (128)
n AA)

for z<l/<m.



This means that the series expansion of 1(z) given in (116) is

dominated by I1 . From (126), we have

1 2 + ln[A/(rz)] (129)

ln(AKM) ln(A/z) In (A/z)

By combining the last two terms, this can be written S

1 - 1 [1 - ln(i/r)] (130)

ln(AKM) ln(A/z) ln(A/z)

The last term in (130) is observed to be the first part of the binomial

expansi on

- 1i 1i [1 In(1/r) S
A In(A/z l[ln(i/r)/In(A/z) In(A/z) :'
In([1l(/r/n(/)

+ . (131) .
In (A/z)

Hence, (130) becomes

-_ + U (132)In(Am) in(A - In (A/z)

rZ

Finally, we combine (116), (128), and (132) to obtain the 0

expression for l(z)

_ 11 1: --. -
I(z) lA1 -- + 0 [--- (133) _

1 n(Aicm ln(L.- in (A/z)'
rZ
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valid for zd<<z<<l/Km. This result reduces to the result in Section 4 of

Reference 3 in the limit as a1- because Km'0 in that limit.

With the application of (133) in (114), the portion Bp(z) of the

branch-cut integral can be approximated by

( 21i ik 2 z 1 1 (134)B (z) : e I I- (14

P bk k2  In In(AKm)
rz

The total branch-cut integral can then be written

B(z) 2 i Qk Q] (135)
bkik2  ln(Az)

rz

where

KK
2 m -KZd  -i > ' >

Q 1 + (kza) f Ke - (136) .

In(A KM) [Wk 2 +ak I1n(A K)f+ (ak K")

for zd<<Z<<I/<m

The contribution of the first term in the brackets in (135) is

the asymptotic value of the branch-cut integral for a perfect conductor.

Hence, the contribution of the second term is the change introduced by the

finite" conductivity of the wire. It is nearly independent of z for small

z and tends to zero in the limit as a, -. We determine its value

numerically for a case of interest in the next section.

- .
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SECTION 4

CURRENT DISTRIBUTION ALONG THE WIRE

In this section, we combine, summarize, and discuss the analyti- S

cal results obtained in the previous sections and present numerical examp-

les. Throughout the section, the source is taken to be on the wire by

setting b equal to a.

-.0:4.1 SUMMARY OF ANALYTICAL RESULTS

The current produced by a 6 function voltage generator of

strength V0 located on the wire at z=O can be written for positive z in .5

the form

I(z) Im (z) + I (z) (137)
mode' space

by combining (36) with (60).

The first term in (137),

2

(z) = -V0 k2 oaa2ni R (z) , (138)
mode j

is the contribution of the complex TM modes guided by the wire with wave- 0

numbers hj that satisfy the modal equation (43). All of these modes

except one (known as the principal mode) are damped out immediately away .

from the generator. The wavenumber h0 of the principal mode is very close

52
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0

to k2 (the wave number of the material surrounding the wire) and it can
2 21/2

lie on either Riemann sheet of the square root a2 = (k2-h0 ). If ho

lies on the upper sheet, the principal mode contributes to the current in

the wire and the mode is said to have been excited. If ho is on the lower

sheet, the mode does not contribute to the current (Ro is then taken to be

zero) and the mode is not excited.

When it is excited, the current produced by the principal mode 0

is given to a good approximation for highly conducting wires by (76),

2 2iV OieihOz
I (z)= , (139) -
mode hok22 1 n(r) + 1] .

2i

where a2 2k2(kz-h 0 )  If we set

h= k2+6 (140)

in the expression for a2 and ho = k2 in the denominator of (121), then

(139) can be written P

I (z) 2iVokzaleihOz (141)mode k 'ln(A6)+1

where A is given by (106).

In order to evaluate (141) for any specific case, it is

necessary to solve the modal equation (43) numerically to determine h0

(and hence 6). This is necessary also, in order to determine whether or

not the mode is excited by determining whether ho is on the upper or lower

Riemann sheet. It has been found numerically that the imaginary part of
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ho is always slightly larger than k2. This means that the attenuation of
. -. ' %-

the principal mode is slightly greater than that of a plane wave in the

surrounding material.

The second term in (137),

2
Ispace(z) = Vok 2CjaB(z) (142)

is the contribution of an electromagnetic wave (known as a space wave)

that radiates from the generator out into the material surrounding the

wire. The wave number of this wave is equal to that of the surrounding

material but its amplitude decreases with distance from the generator

because of the geometrical spreading of the wave as it propagates.

The distribution of current along the wire is given in (142) in

terms of the branch-cut integral B(z). If z>>zd= 2 K2 a so that the

small argument approximations can be used to approximate the Hankel

functions in the integrand, B(z) is given by (111) with b=a. The

resulting expression for the current is

I (z) -2iVOk2 oja 2eik2zf Ke'd (143)
space 0 Wk2+akjK1n(AK]+(akl K

with W given by (109).

If Z>>Zc (ho-k') , then Ispace(z) can be approximated by

(93) (with &! kj) as _

I" +a +1 ik 2 z eik2 z (144)
space k2  W z

54. . . . . . . . . . . . . . . . . . .

. . . . . .. . . ... .. . . . . . . . . . .
. . . . . . . . . . . . . . . . . .. . . . . . . . . .- '



This is the current that would be generated in the far field of an elec-

tric dipole located at the origin and radiating into a homogeneous

material with wave number k2. The reason that the current falls off

faster than 11z is that it is driven by the longitudinal electric field

rather than the transverse electric field of the dipole.

Since the distance zc is very large for a highly conducting

wire, it is desirable for applications to study the properties of the

current much closer to the source. In the region zd<<z<<i/Km, the

space-wave current can be written [by combining (142) and (135)] as -

D

I (z) 2TriVo 1 k2 eik2z[ 1 Q1 (145)
space k ln[A/(rz)]

where Q is given by (136). The positive number Km is the smallest value

of K for which the term Wk2 in the denominator in (143) can be neglected.

The first term on the right-hand side of (145) gives the current that

would result if the wire were a perfect conductor. The second term gives

the change introduced by the finite conductivity of the wire. It tends to

zero as a-. Moreover, Q is nearly independent of z for z<<l/Km.

Hence, Ispace(Z) differs from the perfect-conductor current distribution

by having a component that does not fall off due to geometrical spreading

of the space wave in this region.

The primary difference between the current distributions due to

the principal mode and the space wave is that the variation of the modal

current with z is determined by only its wavenumber h0 whereas the space-

wave current varies with wavenumber k2 with an additional fall off in

amplitude due to geometrical spreading of the space wave. Since ho has

slightly larger imaginary part than k2, the space-wave current will always

dominate the modal current for very large z. Closer to the source,

55
S

* 7. . .**|*~ .



0

however, both currents can be important. Since ho is very nearly equal to

k2 and since the geometrical fall-off of the space wave is very slow in

the near region, the variation of the currents with z can be nearly the

same. The ratio of the amplitudes of the two current is approximated by

[mode fln(AS)+l] n[A/(rz)] (146)

Imode

for Zd<<z<<Il/m.

4.2 NUMERICAL RESULTS

In order to obtain more details concerning the current

distribution along the wire and to check the approximations, it is

necessary to evaluate Imode(Z) and Ispace(z) numerically. The first

is computed from (141) once ho has been determined by solving numerically

an approximate form of the model equation that is valid for the principal

mode. When we apply the approximation a, = k, and the small argument

approximations of the Hankel functions in (42), the modal equation (43) .

reduces to

2 2 ra
Wk2  + ia2akjln,--l-.) = 0 . (147)

This reduces to the equation treated by Sommerfeld to study the modes of a

wire if W is taken to be one. Unfortunately, the numerical procedure

applied by Sommerfeld to solve (147) does not converge for parameter

values of interest in EMP problems when the correct value of W is

applied. Consequently, we applied Muller's method to solve (147)

numerically for a2. Then 6 was evaluated by

2

6 = 2 _ (148) "
2k2  --
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according to (140) and the equation just above it.

Ispace (z) was computed numerically from (143) by using the

trapezoidal rule to evaluate the integral. The approximations of
Ispace(Z) given in (144) and (14b) also were evaluated numerically and

compared with the value obtained from (143). In order to apply (145), Q

given by (136) was computed using the trapezoidal rule. Km was taken to

be the value of K at which the error in approximating the integrand in

(143) (by neglecting the term Wk2 ) is 0.1% of the true integrand.

The values of the parameters used for the computations are

presented in Table 1. The wire parameters correspond to a copper wire

with resistance of R = I0- ohm/m. Additional computations were made for

a=7.4403119 x 10 3 m and a = 7.4403119 x 1U-m which correspond to R x 10

ohm/m and R = 10-2 ohm/m respectively. Since the wire conductivity is so

high, the term involving E1 in the expressions (3) and (4) for k1 was

neglected.

Table 1. Parameters used in the computations.

a, 5.75 x I07 mho/m

02 = i0- 3 mho/m,

e2 = 2000 E: 0

- 103 S
-1

a = 2.3b28332 x 1C 3 m

When the modal equation was solved, it was found that the pole

corresponding to the principal mode lies on the lower Riemann sheet for

all three values of a. This means that the residue of the pole does not

contribute to the current since the sum in (138) is the sum of the
p
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rD

residues of the poles in the upper half of the complex h plane on the

upper Riemann sheet. Consequently, we have

Imode = 0  (149)

for these cases.

It was found by increasing the frequency in the R = 10- ohms/m

case that the pole crosses the branch cut onto the upper Riemann sheet

when w reaches 2.60 x 1  s- . At that frequency, the pole begins to

contribute an amount given by

Imode(Z) = - V0 (.033+.025i)eik2z (ibU)

amps at z = 1000m. As the pole crosses the branch cut, the branch-cut ,

integral increases abruptly by minus the amount given in (150) so that the --.

total current does not change discontinuously.

Computations also were made for a, = 5.75 x 1012 mho/m to see if

the results agreed with the asymptotic theory of a perfectly conducting

wire. Agreement was found to at least three significant figures for z

less than about 10,000 m. Beyond that distance, the perfect-conductor

theory begins to break down for this value of a,. •

In order to display the numerical results, it is convenient to

factor out the propagation term exp(ik 2 z) and the strength V0 of the

excitation. Hence, Figures 3 and 4 respectively show the real and

imaginary parts of 10 (z) defined by "...--

5 8
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Figure 3. Real part of I0(z) for R=10 3 ohm/rn.
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Io(z) I(z) e -ik2z (151)

plotted as a function of z on a log-log plot for the parameter values 0

given in Table 1 (R = 10- 3 ohm/m).

The data shown in these figures do not agree with either of the

approximations of Ispace (z) presented in (144) and (145). To see why, 0

we now determine numerically the regions of validity of the

approximations. Both approximations require that z>>zd in order for the

small-argument approximations of the Hankel functions to be applicable.

Evaluation of (97) for the R = 10- 3 ohm/m case shows that

Zd=I.2 x 10-8 m. Since this value is so small, we conclude that the

above condition will be satisfied for any point of interest alonc the

wire.

The other conditions for validity of the approximations are much

more restrictive. In particular, in order for (145) to be valid with Q

defined by (136) we require that z<<I/<m. Numerical computation of the

terms in the denominator of the integrand shows that Km 0.83 m-  for

the R = 10- 3 ohm/m case. (See the second paragraph above Table I for the

definition of <i). This means that we require that z<<1.2 m in order

for (145) to be useful. Numerical evaluation of the integral expression

for Ispace (z) and Q for very small z shows that (145) agrees with the 0

true value of Ispace (z) to within 2 percent for z<O.l m. Hence, the

approximation provides a useful check of our numerical evaluation of the

integral but it does not provide an analytic approximation of Ispace (z)

in a region of interest.

Similarly, in order for (144) to be useful, we must have
ii II }.

z>>zc = (ho - k2) For the R=10- ohm/m case, it is found that

Zc = 7.3 x 10 m. Numerical evaluation of the integral expression for

Ispace (z) shows that the approximation given in (144) is good to within

• "." " ""- '. " ""- '"" ' "" '"-" -'" "- ' "'"'"- - ''" ''- : '- ' '"-' . .-", '',.-'-.'' . '... "'" ''.,.""- -', "-..."1.



23 percent for z>10,000 m and to within 3.5 percent for z>10 6 m. Again,

we find that the approximation provides a valuable check on the numerical

evaluation of the integral for Ispace (z) but it does not provide an

analytic expression that is useful in the region of interest along the 0

wire.

The range of validity of the approximations can be better for

other values of wire resistance. For R=10- 2 ohm/m, the value of zc is 0

found to be 770 m. Comparison of I0(z) with the approximation correspond-

ing to (144) is shown in Figure 5. It is seen that the approximation is

useful for z beyond about 1OKm.

For R=10 4 ohm/m, Km is found to be 0.069 m- 1. Hence, (145)

is useful for z<<14.5 m. Figure 6 shows the comparison of the real part

of Io(z) with the approximation corresponding to (145). Agreement is

reasonable for z up to about 10 m. S

Figure 6 shows also the real part of the asymptotic approxima-

tion of 10 (z) for a perfect conductor. The result is rather surprising.

Even at very small distances from the source with wire resistance as low

as R=10-4 ohm/m, the perfect-conductor result is not very useful. The

reason for the difference is easily seen by comparing the numerical values

of the integrands in the expressions for Ispace (z) for the two cases.

The absolute values of the integrands are shown in Figure 7 as a function 0

of distance up the branch cut for z=100 m. It is seen that the primary

effect of neglecting the finite resistance of the wire is to greatly

increase the magnitude of the integrand near the branch point. For the

finite resistance case, the integrand is negligible along the portion of 0

the branch cut that is below the pole. For the perfect conductor,

however, that portion of the branch cut provides a significant contribu- -

tion to the integral which increases the absolute value of the resulting

current.

62

_9

... .. . . .-. . .. .- . . . .... . . - o ° ,. . . . . . . , , " . ,



..... Aoproximation
Results of numerical integration

* AD

-10

-iio'

2Figure 5. Real part of IO(z) for R=10- ohm/n.
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In order to display the effect that finite resistance has on the--

current distribution along the wire, let Ipc(z) be the asymptotic

approximation of lo(z) for a perfect conductor defined by

27ri alk 2  0
I (Z) = 1 (152)
PC k' ln[A/(rz)]

and let IR(z) be defined by

10 (z) = Ipc(Z) + IR(z) (153)

for the resistive wire*. With this definition IR(z) was determined

numerically for the R=I - ohm/m case by numerical evaluation of lo(z)

and Ipc(z). The results are shown in Table 2 where A0, Apc, AR and

0, OPC, R are respectively the amplitudes in amp/m and phases in

radians of Io(z), Ipc(z), and IR(z)• It is seen that IR(z) is a

very slowly varying function of z over a very large range. Moreover, it

is seen that IR(Z) is similar in magnitude to Ipc(z) but nearly

opposite in phase. As a result, the amplitude of the current is reduced

from the perfect-conductor case by a substantial amount which is given the

last column in Table 2. The results show that the decrease in current

amplitude is nearly independent of distance from the source over the

entire range of interest. Since the current in a perfect conductor

decreases with distance from the source, the relative change in current

due to wire resistance increases with distance..

* Noe tat or Z«Z« 1/'mg IR(z) is approximately proportional
to Q according to (145).

66

-* -.. . . *~.., *, ., *.-..K. ..-.



Table 2. Change in current due to wire resistance of 10-3 ohm/m.

z(m) _ (z) IPC(Z) IR(Z) Apc" A

Ao *o Apc <PC AR '#R

100 .0816 1.31,1 .295 1.23n .216 .206w .213

101 .0517 1.36w .263 1.24n .216 .207w .211

102 .0288 1.21w .237 1.24n .216 .209n .208

103 .0119 -.2991 .217 1.24w .215 .220n .205

10 .00175 .247w .198 1.24w .215 .238n .196
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0

SECTION 5

CONCLUS IONS

The results of this study have exposed the reason that

transmission-line theory does not describe accurately the behavior of

currents generated by localized sources on uninsulated wires. The current

is dominated by an electromagnetic space wave that radiates energy out-.0

into space. Since transmission-line theory applies to TEM modes guided by

the transmission line, it does not describe the behavior of space waves.

Although the wire does support a guided TM mode that is approximately

transverse electric and hence, could be described by transmission-line S

theory, the frequencies of interest are too low for the mode to be

excited. For frequencies above several KHz, the mode begins to be excited

but it still makes only a minor contribution to the total current. .

A simple analytic approximation is available for the current

distribution along the wire in the region of interest provided that the

wire is a perfect conductor. This study has provided the numerical values

of the correction term that must be added to account for the finite S

resistance of the wire for typical conductivities. It was found that the

correction term is nearly constant along the wire and that it is similar

in magnitude hut nearly opposite in phase from the perfect-conductor

result. Consequently, an important effect of finite wire resistance is to .

reduce the current amplitude by a substantial amount that is nearly

independent of distance from the source. The relative difference in the

current, however, increases with distance from the source. For R=10- 3  . ...-.

ohm/m, the current amplitude is about 20 percent of the perfect-conductor -..
result for z=lm and about 5 percent for z=lOOOm.
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